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Figure 1: Upscaling using local scale-similarity. The patches (yellow) when downscaled are very similar to their cropped version (red).

Abstract. In our talk we describe a new high-quality and efficient
GPU-based upscaling technique that extends existing example-
based super-resolution frameworks in several respects. The new al-
gorithm is inherently parallel and operates independently on small
localized regions in the image. Leveraging these properties with
a specialized GPU implementation allows to convert a video se-
quence in NTSC format (640× 480 pixels) to full HD 1080p stan-
dard (1920× 1080 pixels) in 24 fps, while meeting today’s highest
upscaling image quality.

Algorithm Overview. As depicted in Figure 2, given an input
imageI1, we start off by interpolating it linearly to a finer grid.
This initial upsampled image which we denoteL2 lacks a frac-
tion of its upper frequency band, depending on the scaling fac-
tor. We predict this missing band using a non-parametric patch-
based model that does not rely on external example databases but
rather follows alocal self-similarityassumption as follows. We
start the prediction process by creating examples where we sepa-
rate the input image into low and high frequency bands. This de-
composition is done using a smoothing operator. We denote the
smoothed input byL1 and compute the high frequency band image
by H1 = I1 − L1. We then scanL2, and for each of its patchesp,
we search in a small neighborhoodN(p) in L1 centered at the same
normalizedcoordinates. We pick the most similar patch, according
to q∗ = argminq ‖L1(q)− L2(p)‖1, and simply addH1(q

∗) to
H(p) and average overlapping values. In our talk we provide more
details on this scheme. A key component, responsible to the suc-
cess of this framework is the construction of new dedicated linear
interpolation, decimation and smoothing filtering, as we explain be-
low.

Local Self-Similarity. As we mentioned above, the nearest patch
search isnotperformed across the entire image, instead we exploit a
local scale-invariance in images that allows to reproduce the native-
resolution of various singularities in images, such as edges and cor-
ners, shown in Figure 1. In the talk we describe this regularity in
natural images and show how highly relevant patches can be found
at extremely localized regions in the downscaled image. In effect,
this reduces the nearest-patch search efforts to just a small frac-
tion, less than one-percent, compared to searching the entire image
or using popular approximate nearest neighbor packages. We are
certain this assumption can be used in the future for various other
applications in computer graphics.
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Figure 2: Upscaling scheme. A patch of lower frequency band from
the upsampled image is matched (green arrow) to its nearest patch
within a local neighborhood in the low-passed input image (purple
window). The upper frequency band of the matched patch in the
input is taken (red arrow) to fill in the missing upper band in the
output upsampled image.

Non-Dyadic Filter Bank The local self-similarity assumption holds
better for low magnification factors. Therefore, we upscale the im-
age in several small increments, and to that end we developed a
new dedicated filter bank. The construction of this filter bank fol-
lows principles commonly used in the construction of wavelets, yet
extendsthe common dyadic wavelets to non-dyadic scaling.

Moreover, the new filters achieve an optimal exploitation of the in-
put pixels and an increase in the visual realism, by maintaining con-
sistency with the input image. While existing methods achieve this
by solving large systems of linear equations, we design the filters
such that they are nearly-biorthogonal. Thus, we obtain consistency
though an explicit and therefore efficient computation, allowing our
simple “copy-paste” high-frequency prediction scheme to achieve
high quality results.

GPU Implementation. The operations performed in our algorithm,
the linear interpolation, the smoothing, and the patch search are all
local in terms of memory access. This property enables a very ef-
ficient GPU implementation, where every GPU core is assigned to
a small part of the image, typically a window of 10-by-10 pixels.
The cores keep the input and example pixels data in their fast lo-
cal memory and thus avoid any access to the slower global device
memory. We also execute our scheme on a subsampled set of pixels
and exploit coherence in the example matches to further increase
speed. These adaptations of the algorithms allow us to achieve a
major speedup of two orders of magnitude, compared to a CPU im-
plementations.


